## Three-Point Phase, Symplectic Measure, and Berry Phase

V. Cantoni<sup>1</sup> and L. Mistrangioli<sup>1</sup>

Received November 27, 1991

It is shown that the geometric phase (Berry phase) around a cycle in the complex projective space of pure states of a quantum mechanical system can be expressed in terms of an elementary three-point phase function which is the simplest manifestation of the complexity of the underlying Hilbert space. In terms of this three-point phase it is possible to construct a geometrically relevant phase function defined mod  $4\pi$  on the cycles and closely related to the natural symplectic structure of the state space.

Page (1987) has shown that the geometric phase (Berry, 1984; Aharonov and Anandan, 1987, 1990) (Berry phase) associated with an oriented cycle C in the complex projective space  $\mathcal{P}$  of pure states of a quantum mechanical system is equal, mod  $2\pi$ , to the symplectic measure  $\int_S \Omega$  of any twodimensional submanifold S of  $\mathcal{P}$  with boundary C, provided that the natural symplectic form  $\Omega$  of  $\mathcal{P}$  (Arnold, 1978; Dubrovin *et al.*, 1990) is suitably normalized. We shall show that  $\int_S \Omega$  is directly determined by the simplest significant manifestation of the complexity of the underlying Hilbert space  $\mathcal{H}$ , namely the elementary angular three-state function  $\vartheta$  that we shall now consider and call the *three-point phase*.

Let  $\alpha$  and  $\beta$  be unit representatives in  $\mathcal{H}$  of two nonorthogonal pure states  $\alpha$  and  $\beta$ : in the complex scalar product  $\langle \alpha, \beta \rangle \equiv \rho \exp(i\phi)$  the angle  $\phi$  has no physical relevance, since it can take any value according to the choice of the representatives. But if three pairwise nonorthogonal states  $\alpha$ ,  $\beta$ , and  $\gamma$  are considered and one sets  $\langle \alpha, \beta \rangle \langle \beta, \gamma \rangle \langle \gamma, \alpha \rangle \equiv \tau \exp(-i\vartheta)$ , the angle  $\vartheta$  (determined mod  $2\pi$ ) is unaffected by changes of the representatives and depends on the triple  $(\alpha, \beta, \gamma)$  only (with a change of sign under odd permutations of the states). For this reason the *three-point phase*  $\vartheta(\alpha, \beta, \gamma)$ is likely to be physically significant.

<sup>1</sup>Dipartimento di Matematica, Università di Milano, 20133 Milano, Italy.

937

938

We shall show that around the minimal geodesic triangle  $\alpha\beta\gamma$  [i.e., the triangle in  $\mathscr{P}$  whose sides are the shortest geodesics—with respect to the Fubini-Study metric (Kobayashi and Nomizu, 1969)—joining the vertices  $\alpha$ ,  $\beta$ , and  $\gamma$ ], the three-point phase is the same thing as the Berry phase. Then, by means of such elementary triangular meshes, we shall express the Berry phase around any element C of a quite general class of cycles. More precisely, from the three-point phase  $\vartheta$  we shall construct a phase-function  $\Phi(C)$ , defined mod  $4\pi$  on the cycles, which turns out to be equal (mod  $4\pi$ ) to the symplectic measure of any two-dimensional submanifold bounded by C. Therefore  $\Phi$  is also equal, mod  $2\pi$ , to the Berry phase. Finally, we make some remarks on the geometrical significance of the fact that the phase function  $\Phi$  is defined mod  $4\pi$  (rather than mod  $2\pi$ ).

First we compute, by applying Page's result, the Berry phase around the geodesic triangle  $\alpha\beta\gamma$ .

If two pure states  $\lambda$  and  $\mu$  are not orthogonal to each other and are represented by the unit vectors  $\lambda$  and  $\mu$ , the shortest oriented geodesic  $\lambda\mu$ from  $\lambda$  to  $\mu$  in  $\mathcal{P}$  (with respect to the Fubini-Study metric) is the map

$$t \rightarrow \frac{\lambda + [\langle \langle \boldsymbol{\mu}, \boldsymbol{\lambda} \rangle / | \langle \boldsymbol{\mu}, \boldsymbol{\lambda} \rangle ] \boldsymbol{\mu} - \boldsymbol{\lambda}] t}{[1 + 2t(t-1)(1 - | \langle \boldsymbol{\lambda}, \boldsymbol{\mu} \rangle ])^{1/2}}$$
(1)

from the unit interval to  $\mathcal{P}$  (where the points of  $\mathcal{P}$  are identified by their representatives in  $\mathcal{H}$ ).

We introduce a coordinate system in  $\mathcal{P}$ , adapted to our problem, as follows. First, we note that once a definite unit representative  $\alpha$  of  $\alpha$  has been arbitrarily chosen, a normalized representative  $\lambda$  of any other point  $\lambda$  of  $\mathcal{P}$  can be uniquely selected by requiring that  $\langle \lambda, \alpha \rangle$  be positive, provided that  $\lambda$  and  $\alpha$  are not orthogonal. With this choice of the representatives we then consider an orthonormal basis ( $\mathbf{e}_0, \mathbf{e}_1, \mathbf{e}_2...$ ) of  $\mathcal{H}$  with first element  $\mathbf{e}_0 \equiv \alpha$ , second element  $\mathbf{e}_1$  such that  $\boldsymbol{\beta}$  is a real linear combination of  $\mathbf{e}_0$  and  $\mathbf{e}_1$ , and third vector  $\mathbf{e}_2$  such that  $\boldsymbol{\gamma}$  is a (generally complex) linear combination of  $\mathbf{e}_0, \mathbf{e}_1$ , and  $\mathbf{e}_2$  and such that  $\langle \boldsymbol{\gamma}, \mathbf{e}_2 \rangle$  is real. Then every point  $\lambda$  of  $\mathcal{P}$  not orthogonal to  $\alpha$  is uniquely identified by the independent complex components  $z_1, z_2, z_3...$  of its representative  $\lambda$  with respect to this basis:

$$\boldsymbol{\lambda} = \left(1 - \sum_{h} \bar{z}_{h} z_{h}\right)^{1/2} \mathbf{e}_{0} + \sum_{h} z_{h} \mathbf{e}_{h}$$

Setting  $z_h \equiv x_h + iy_h$ , we get a system of real coordinates  $(x_1, y_1, x_2, y_2, ...)$  that we shall also use.

These coordinates turn out to be canonical for the natural symplectic form  $\Omega$  of  $\mathcal{P}$ , up to a factor which depends on the normalization of  $\Omega$ . Following Page, we shall adopt the normalization which makes the period of  $\Omega$  equal to  $4\pi$ , namely  $\Omega = 2\sum_{h} dy_h \wedge dx_h \equiv i \sum_{h} d\overline{z}_h \wedge dz_h$ . Since the points

## **Berry Phase**

on the geodesic arcs  $\alpha\beta$ ,  $\beta\gamma$ , and  $\gamma\alpha$  correspond to vectors of  $\mathscr{H}$  all lying in the subspace generated by  $\mathbf{e}_0$ ,  $\mathbf{e}_1$ , and  $\mathbf{e}_2$ , the arcs belong to the real finite-dimensional submanifold of  $\mathscr{P}$  on which  $x_h = 0$  and  $y_h = 0$  for h > 2, and the integral of  $\Omega$  on any two-dimensional surface bounded by the triangle  $\alpha\beta\gamma$  and lying in the domain of the coordinates can be evaluated, via Stokes' theorem, by integrating the 1-form

$$\Gamma \equiv \sum_{h=1}^{2} (y_h \, dx_h - x_h \, dy_h) \equiv \frac{i}{2} \sum_{h=1}^{2} (\bar{z}_h \, dz_h - z_h \, d\bar{z}_h)$$

along the contour

$$\int \int \Omega = \oint \Gamma$$
 (2)

We must compute the line integral on the right-hand side (which is coordinate-independent, though the 1-form  $\Gamma$  and, with it, the separate contribution of each side of the contour are not).

According to our conventions,  $\langle \alpha, \beta \rangle$  and  $\langle \alpha, \gamma \rangle$  are positive, while  $\langle \beta, \gamma \rangle$  is in general complex, so that we can set  $\langle \alpha, \beta \rangle = c$ ,  $\langle \alpha, \gamma \rangle = b$ , and  $\langle \beta, \gamma \rangle = a \exp(-i\vartheta)$ , where *a*, *b*, and *c* are positive and  $\vartheta$  is the three-point phase defined above. According to (1), the side  $\alpha\beta$  of our geodesic triangle has the coordinate representation

$$x_1(t) = \frac{(1-c^2)^{1/2}t}{[1+2t(t-1)(1-c)]^{1/2}}, \qquad y_1(t) = 0, \qquad x_2(t) = 0, \qquad y_2(t) = 0$$

and does not contribute to the line integral. The side  $\gamma \alpha$  has the coordinate representation

$$x_{1}(t) = \frac{a\cos\vartheta - bc}{(1-c^{2})^{1/2}} T(b, t), \qquad y_{1}(t) = \frac{a\sin\vartheta}{(1-c^{2})^{1/2}} T(b, t)$$
$$x_{2}(t) = \frac{(1-a^{2}-b^{2}-c^{2}+2abc\cos\vartheta)^{1/2}}{(1-c^{2})^{1/2}} T(b, t), \qquad y_{2}(t) = 0$$

where we have set  $T(b, t) \equiv (1-t)/[1+2t(t-1)(1-b)]^{1/2}$ , from which one gets  $\int_{\gamma \alpha} \sum_{h=1}^{2} (x_h \, dy_h - y_h \, dx_h) = 0$ .

In order to compute the contribution of the side  $\beta\gamma$ , it is convenient to introduce a second coordinate system  $(x'_1, y'_1, x'_2, y'_2, ...)$  constructed exactly like  $(x_1, y_1, x_2, y_2, ...)$  except for the replacement of  $\alpha$  with  $\beta$ ,  $\beta$ with  $\gamma$ , and  $\gamma$  with  $\alpha$ . Denoting by  $(\mathbf{e}'_0, \mathbf{e}'_1, \mathbf{e}'_2...)$  the orthonormal basis related to the new coordinates as  $(\mathbf{e}_0, \mathbf{e}_1, \mathbf{e}_2...)$  was related to the old ones, the generic state  $\lambda$  is now parametrized by the real and imaginary parts of the independent components  $(z'_1, z'_2, ...)$  of the representative

$$\mathbf{\lambda}' = \exp(i\psi) \mathbf{\lambda} \tag{3}$$

where  $\psi$  must be chosen such that  $\langle \lambda', \beta \rangle$  be positive, i.e.,

$$\psi(\lambda) = \operatorname{Arg}\langle \lambda, \beta \rangle \tag{4}$$

By decomposing the left-hand side of (3) with respect to the new basis and the right-hand side with respect to the old one, we get

$$l'\boldsymbol{\beta} + z_1'\boldsymbol{e}_1' + z_2'\boldsymbol{e}_2' = \exp(i\psi) \left(l\boldsymbol{\alpha} + z_1\boldsymbol{e}_1 + z_2\boldsymbol{e}_2\right)$$

where  $l \equiv (1 - \bar{z}_1 z_1 - \bar{z}_2 z_2)^{1/2}$  and l' is defined analogously. The scalar products of this relation with  $\mathbf{e}_1$  and  $\mathbf{e}_2$  yield  $z_1 = \exp(-i\psi) L_1$  and  $z_2 = \exp(-i\psi) L_2$ , where  $L_h \equiv l' \langle \mathbf{e}_h, \beta \rangle + \langle \mathbf{e}_h, \mathbf{e}_1' \rangle z_1' + \langle \mathbf{e}_h, \mathbf{e}_2' \rangle z_2'$  and, according to (4),  $\psi$  can be regarded as a well-determined function of  $z_1'$  and  $z_2'$ . From these relations one gets

$$\sum_{1}^{2} \left( \bar{z}_{h} \, dz_{h} - z_{h} \, d\bar{z}_{h} \right) = \sum_{1}^{2} \left( \bar{L}_{h} \, dL_{h} - L_{h} \, d\bar{L}_{h} - 2i\bar{L}_{h}L_{h} \, d\Psi \right) \tag{5}$$

Now, in the primed coordinates the geodesic  $\beta \gamma$  has the representation

$$x_1'(t) = \frac{(1-a^2)^{1/2}t}{[1+2t(t-1)(1-a)]^{1/2}}, \quad y_1'(t) = 0, \quad x_2'(t) = 0, \quad y_2'(t) = 0$$

and the restriction  $\Gamma_{\beta\gamma}$  of the 1-form  $\Gamma$  to this side of the triangle reduces, after some calculation, to the following expression:

$$\Gamma_{\beta\gamma} = \frac{bc\sin\vartheta}{(1-a)^{1/2}} [2(1-x_1'^2)^{1/2} dx_1' - d(x_1'(1-x_1'^2)^{1/2})] \\ -\frac{bc\sin\vartheta dt}{1+2t(t-1)(1-a)} + d\psi$$

After integration from  $\beta$  to  $\gamma$  all terms except the last one cancel out, so that  $\int_{\beta\gamma} \Gamma = \psi(\gamma) - \psi(\beta)$ , which is just  $\vartheta$  on account of (4). Summing up, we obtain  $\oint \Gamma = \vartheta$ , which shows that the Berry phase around a geodesic triangle indeed coincides with the three-point phase  $\vartheta$ .

We now use this result to construct, from  $\vartheta$ , a phase function  $\Phi(c)$  defined, mod  $4\pi$ , on a restricted class  $\mathscr{C}_0$  of one-dimensional cycles in  $\mathscr{P}$  that we shall call "small cycles." Next we shall extend  $\Phi$  to a wider class  $\mathscr{C}$ .

By small cycle we mean a closed oriented curve  $t \rightarrow c(t)$   $[0 \le t \le 1$ , c(0) = c(1)] entirely contained in some open ball of  $\mathcal{P}$  of radius  $\pi/2$  with respect to the distance function determined by the Fubini-Study metric, the metric being normalized so that the length of the closed geodesics is  $2\pi$ . Thus the ball contains no pair of conjugate points, i.e., no pair of points representing orthogonal states, and it lies in the domain of some local coordinate system.

## **Berry Phase**

For any finite partition of the unit interval determined by the numbers  $t_0 = 0 < t_1 < t_2 < \cdots < t_{n-1} < t_n = 1$ , let us denote by  $\beta_i \equiv c(t_i)$  the corresponding points on the small cycle c. Let us choose any point  $\alpha$  in a ball containing c, and set  $\sigma \equiv \sum_{i=0}^{n-1} \bar{\vartheta}(\alpha, \beta_i, \beta_{i+1})$ , where, for each geodesic triangle  $\alpha \beta_i \beta_{i+1}$ ,  $\bar{\vartheta}(\alpha,\beta_i,\beta_{i+1})$  denotes the unique representative of the three-point phase  $\vartheta$ such that  $-\pi \leq \overline{\vartheta} < \pi$ . Moreover, let us denote by s any oriented 2-manifold bounded by c and lying in the ball, and by  $s_i$  any oriented 2-manifold bounded by the triangle  $\beta_i \alpha \beta_{i-1}$ , also in the ball. From our previous result we have  $\sigma = -\int_{u} \Omega$ , where  $u = \bigcup_{i=0}^{n-1} s_i$  is the union of the "triangular" surfaces  $s_i$ . On the other hand, it is possible to choose an additional oriented 2-manifold  $\varepsilon$  in the ball, bounded by c and by the geodesic polygon  $\beta_1\beta_2\ldots\beta_n$ , in such a way that its union with s and u forms a twodimensional cycle (Figure 1). From the fact that the integral of  $\Omega$  over such cycles vanishes mod  $4\pi$  ( $4\pi$  being the period of  $\Omega$  with our normalization), it is not difficult to prove that  $\sigma$  is independent of the choice of the ball containing c and of the point  $\alpha$  in the ball, and that

$$\lim_{\Delta \to 0} \sigma = \int_{S} \Omega \tag{6}$$

where the limit is taken over the partitions of the unit interval and, for each partition,  $\Delta \equiv \max |t_{i+1} - t_i|$ . Thus, we can set

$$\Phi(c) \equiv \lim_{\Delta \to 0} \sigma \tag{7}$$

and the function  $\Phi$  so defined is well determined mod  $4\pi$  on the class  $\mathscr{C}_0$  of small cycles.

The function  $\Phi$  defined by (7) on the set of small cycles is directly determined by the three-point phase. On account of its property (6), it is



Fig. 1. The approximation of the phase function around a small cycle by a sum of three-point phases.

easy to extend  $\Phi$  from small cycles to the boundary C of any oriented 2-manifold S, provided that S is decomposable, as sketched in Figure 2, into portions  $s_h$  bounded by small cycles  $c_h$ . One can simply set  $\Phi(C) = \sum_h \Phi(c_h)$ , and it is an immediate consequence of (6) that, with this definition,  $\Phi(C)$  is well determined mod  $4\pi$ , irrespective of the particular choice of the surface S bounded by C and of the particular decomposition of S.

The fact that the phase function  $\Phi$  is defined mod  $4\pi$  (rather than mod  $2\pi$ ) is geometrically significant, in the sense that for any number  $\phi$  such that  $0 \le \phi < 2\pi$  the set of cycles C such that  $\Phi(C)$  is represented by  $\phi$  and the set of cycles C' such that  $\Phi(C')$  is represented by  $\phi + 2\pi$  are distinct.

To visualize this point, let us consider the complex projective space  $\mathscr{P}$ of lowest dimension, namely  $\mathbb{CP}^1$ . In this case, with our normalization of the metric,  $\mathscr{P}$  is just the 2-sphere of curvature 1, and with our normalization of  $\Omega$  the symplectic measure of the whole space is  $4\pi$ . For any  $\phi$  in the range  $0 \le \phi < 2\pi$ , let C be the generic cycle of a class such that  $\Phi(C)$  is represented by  $\phi$ : then one of the connected regions of the sphere bounded by C has area  $\phi$ , and the complementary region has area  $4\pi - \phi$ . Similarly, if  $\phi$  is replaced by  $\phi' \equiv \phi + 2\pi$ , the cycles C' of the class such that  $\Phi(C')$ is represented by  $\phi'$  divide the sphere into two complementary regions with areas  $\phi + 2\pi$  and  $2\pi - \phi$ . Obviously the two classes of cycles are disjoint.

More particularly, for  $\phi$  in the range  $0 \le \phi < 4\pi$ , let  $\alpha$ ,  $\beta$ , and  $\gamma$  be pairwise nonconjugate points such that the oriented area of one of the regions enclosed by the minimal geodesic triangle  $\alpha\beta\gamma$  is  $\phi$  (Figure 3a). If  $\alpha\beta\gamma$  is replaced by a (nonminimal) geodesic triangle with the same vertices but one of the sides replaced by the maximal geodesic between its endpoints (Figure 3b), the corresponding area  $\phi'$  enclosed by the new triangle is  $\phi+2\pi$  if  $\phi<2\pi$  and  $\phi-2\pi$  if  $\phi\geq 2\pi$ . (In the special case of three points  $\alpha$ ,  $\beta$ , and  $\gamma$  on the same great circle, one of the two triangles determines a cycle enclosing a vanishing area, while the other is the whole oriented great



Fig. 2. The relation between a generic cycle and small cycles.



Fig. 3. (a) A minimal geodesic triangle with phase  $\phi$ . (b) A geodesic triangle with the same vertices, but with phase  $\phi + 2\pi$ .

circle, which encloses an area  $2\pi$ .) In all cases two such distinct geodesic triangles with the same vertices are cycles of quite different kinds, which are distinguished by the phase function  $\Phi$ .

## REFERENCES

Aharonov, Y., and Anandan, J. (1987). Physical Review Letters, 58, 1593.

- Aharonov, Y., and Anandan, J. (1990). Physical Review Letters, 65, 1697.
- Arnold, V. (1978). Mathematical Methods of Classical Mechanics, Springer-Verlag, Berlin, Appendix 3.

Berry, M. V. (1984). Proceedings of the Royal Society of London A, 392, 45.

- Dubrovin, B. A., Novikov, S. P., and Fomenko, A. T. (1990). Modern Geometry-Methods and Applications, Part III, Springer-Verlag, Berlin.
- Kobayashi, S., and Nomizu, N. (1969). Foundations of Differential Geometry, Vol. II, Interscience, New York.

Page, D. N. (1987). Physical Review A, 36, 3479.