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It is shown that the geometric phase (Berry phase) around a cycle in the complex 
projective space of pure states of a quantum mechanical system can be expressed 
in terms of an elementary three-point phase function which is the simplest 
manifestation of the complexity of the underlying Hilbert space. In terms of this 
three-point phase it is possible to construct a geometrically relevant phase 
function defined mod 4~r on the cycles and closely related to the natural symplec- 
tic structure of the state space. 

Page (1987) has shown that the geometric phase (Berry, 1984; Aharonov 
and Anandan, 1987, 1990) (Berry phase) associated with an oriented cycle 
C in the complex projective space ~ of pure states of a quantum mechanical 
system is equal, mod 2~r, to the symplectic measure Js f/ of any two- 
dimensional submanifold S of ~ with boundary C, provided that the natural 
symplectic form f / o f  ~ (Arnold, 1978; Dubrovin et al., 1990) is suitably 
normalized. We shall show that ~s fl is directly determined by the simplest 
significant manifestation of the complexity of the underlying Hilbert space 
~, namely the elementary angular three-state function O that we shall now 
consider and call the three-point phase. 

Let at and I~ be unit representatives in ~ of two nonorthogonal pure 
states a and/3: in the complex scalar product (a, I~)-=p exp(i~) the angle 
4' has no physical relevance, since it can take any value according to the 
choice of the representatives. But if three pairwise nonorthogonal states a, 
/3, and y are considered and one sets (a, [3)([3, ~')(~', or) -= r exp(-iO), the 
angle ~ (determined mod 2~-) is unaffected by changes of the representatives 
and depends on the triple (a,/3, y) only (with a change of sign under odd 
permutations of the states). For this reason the three-point phase t~(a,/3, y) 
is likely to be physically significant. 
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We shall show that around the minimal geodesic triangle af ly  [i.e., the 
triangle in ~ whose sides are the shortest geodesics--with respect to the 
Fubini-Study metric (Kobayashi and Nomizu, 1969)--joining tke vertices 
a, /3, and y], the three-point phase is the same thing as the Berry phase. 
Then, by means of such elementary triangular meshes, we shall express the 
Berry phase around any element C of a quite general class of cycles. More 
precisely, from the three-point phase O we shall construct a phase-function 
�9 (C), defined rood 4~- on the cycles, which turns out to be equal (mod 4~r) 
to the symplectic measure of any two-dimensional submanifold bounded 
by C. Therefore ~P is also equal, mod 2~, to the Berry phase. Finally, we 
make some remarks on the geometrical significance of the fact that the 
phase function ~ is defined mod 4~r (rather than mod 2~r). 

First we compute, by applying Page's result, the Berry phase around 
the geodesic triangle afly. 

If two pure states A and /~ are not orthogonal to each other and are 
represented by the unit vectors A and/~, the shortest oriented geodesic A/~ 
from A to/z  in ~ (with respect to the Fubini-Study metric) is the map 

x + x)l)  - x l  t 
t -> [1 +2t(Z - 1)(1 -](k, p,)l)] '/2 (1) 

from the unit interval to ~ (where the points of ~ are identified by their 
representatives in ~).  

We introduce a coordinate system in ~, adapted to our problem, as 
follows. First, we note that once a definite unit representative at of ot has 
been arbitrarily chosen, a normalized representative k of any other point 
A of ~ can be uniquely selected by requiring that (k, at) be positive, provided 
that A and a are not orthogonal. With this choice of the representatives we 
then consider an orthonormal basis (eo, el, e2. . . )  of ~ with first element 
Co--- at, second element el such that 13 is a real linear combination of eo and 
el, and third vector e2 such that ~, is a (generally complex) linear combination 
of Co, el, and e2 and such that (~,, e2) is real. Then every point A of ~ not 
orthogonal to a is uniquely identified by the independent complex com- 
ponents z~, z2, z3. . .  of its representative k with respect to this basis: 

k=(1--~Z~Zh) eo+~zheh 

Setting Zh -= Xh + iyh, we get a system of  real coordinates (x~, #~, x2, Y2, . . .  ) 
that we shall also use. 

These coordinates turn out to be canonical for the natural symplectic 
form fl of ~, up to a factor which depends on the normalization of 11. 
Following Page, we shall adopt the normalization which makes the period 
o f l l  equal to 4Ir, namely fl = 2 ~h dyh ^ dXh -- i ~,h dgh ^ dzh. Since the points 
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on the geodesic arcs otfl, fly, and ya correspond to vectors of Y( all lying 
in the subspace generated by eo, el, and e2, the arcs belong to the real 
finite-dimensional submanifold of ~ on which Xh = 0 and Yh = 0 for h > 2, 
and the integral of 1~ on any two-dimensional surface bounded by the 
triangle ctlly and lying in the domain of the coordinates can be evaluated, 
via Stokes' theorem, by integrating the 1-form 

i ~ ( ~,h dZh _ Zh d~.h ) F ~  h=i  ( yh d Xh - -Xh d yh ) -~ '2  h=l  

along the contour 

We must compute the line integral on the right-hand side (which is coordin- 
ate-independent, though the 1-form F and, with it, the separate contribution 
of each side of the contour are not). 

According to our conventions, Cat, 13) and Cat, ~/) are positive, while 
(13, ~/) is in general complex, so that we can set Cot, 13)=c, Cat, ~')= b, and 
(13, ~/) = a exp(- iO),  where a, b, and c are positive and O is the three-point 
phase defined above. According to (1), the side otfl of our geodesic triangle 
has the coordinate representation 

(1 - c2)~/~t  
x~ ( t ) - [ l+2 t ( t _ l ) ( l _c ) ] , / 2 ,  yl(t) =0,  X2(t) = 0 , y2(t) = 0  

and does not contribute to the line integral. The side ya has the coordinate 
representation 

a cos O - bc a sin 0 
x l ( t ) -  (1_c2)1/2 T(b,t),  y l ( t ) - ( l _ c 2 ) l / 2 T ( b , t  ) 

(1 - a 2 -  b 2 -  c2+2abc cos O) x/2 
x2(t) - (1 - c2) 1/2 T(b, t), y2(t) = 0 

where we have set T(b, t)=-(1 - t ) / [ 1  + 2 t ( t -  1 ) (1-  b)] 1/2, from which one 
gets Sv~ Y.~=I (Xh dyh--Yh dXh)=0. 

In order to compute the contribution of the side 113, it is convenient 
to introduce a second coordinate system (x~, y~, x~, y ~ , . . . )  constructed 
exactly like (xl,  Yl, x2, y 2 , . . . )  except for the replacement of a with/3,/3 
with 3,, and y with or. Denoting by (eL, e~, eL . . . )  the orthonormal basis 
related to the new coordinates as (eo, el, e2. �9 .) was related to the old ones, 
the generic state A is now parametrized by the real and imaginary parts of 
the independent components (z~, z~ , . . . )  of the representative 

k ' =  exp(i~/,) k (3) 
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where ~ must be chosen such that (k', I~) be positive, i.e., 

~b(A) = Arg(k, ~) (4) 

By decomposing the left-hand side of (3) with respect to the new basis and 
the fight-hand side with respect to the old one, we get 

l'~ + z~e~ + z~e~ = exp(i~b) ( la  + Zlel + z2e2) 

where 1---- (1 -~1zl -  ~.2z2) ~/2 and l' is defined analogously. The scalar prod- 
ucts of this relation with el and e2 yield z l=exp( - i@)L1 and z2 = 
exp( - i0 )  L2, where Zh =-~ l'(eh, fl)'~-(eh, e~)z~ +(eh, e~)z~ and, according to 
(4), ~b can be regarded as a well-determined function of z~ and z~. From 
these relations one gets 

2 2 

~.(~hdZh--Zhd~h)=Y~(EhdLh--LhdEh--2iEhLhdq r) (5) 
1 1 

Now, in the primed coordinates the geodesic f l y  has the representation 

(1 - a2)l/2t 
x~(t)=[l+2t(t_l)( l_a)]l /2,  y~(t) =0,  x~(t) =0,  y~(t) = 0  

and the restriction F~v of the 1-form F to this side of the triangle reduces, 
after some calculation, to the following expression: 

bc sin O 
F~v - (1 - a) 1/2 [2(1 -x~2) ~/2 dx~- d(x~(1 - x~2)1/2)] 

bc sin O dt 
~-d6 

l + 2 t ( t - 1 ) ( 1 - a )  

After integration from /8 to ~, all terms except the last one cancel out, so 
that Say F = ~(3') - ~b(fl), which is just O on account of (4). Summing up, 
we obtain ~ F = O, which shows that the Berry phase around a geodesic 
triangle indeed coincides with the three-point phase ~. 

We now use this result to construct, from O, a phase function ~(c)  
defined, mod 4~r, on a restricted class C~o of one-dimensional cycles in 
that we shall call "small cycles." Next we shall extend qb to a wider class cC 

By small cycle we mean a closed oriented curve t-~c(t) [ 0 - t - < l ,  
c(0) = c(1)] entirely contained in some open ball of  ~ of radius r with 
respect to the distance function determined by the Fubini-Study metric, 
the metric being normalized so that the length of the closed geodesics is 
2r Tlaus the ball contains no pair of conjugate points, i.e., no pair of points 
representing orthogonal states, and it lies in the domain of some local 
coordinate system. 
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For any finite partition of  the unit interval determined by the numbers 
to = 0 < tl < t2 <"  �9 �9 < tn-1 < t, = 1, let us denote b y / 3 i -  c(t~)the correspond- 
ing points on the small cycle c. Let us choose any point a in a ball containing 

n--1 
c, and set o- -= Y.i=o O(a,/31,/3~+~), where, for each geodesic triangle oL/3~/3~+1, 
~(a,/3i,/3~+~) denotes the unique representative of  the three-point phase O 
such that - ,r -< O < ~r. Moreover, let us denote by s any oriented 2-manifold 
bounded by c and lying in the ball, and by s~ any oriented 2-manifold 
bounded by the triangle/3~a/3~_~, also in the ball. From our previous result 
we have o" = - ~ ,  f~, where u = (..j7_s ~ s~ is the union of  the "tr iangular" 
surfaces si. On the other hand, it is possible to choose an additional oriented 
2-manifold e in the ball, bounded by c and by the geodesic polygon 
/31/32.../3,, in such a way that its union with s and u forms a two- 
dimensional cycle (Figure 1). From the fact that the integral of  ~ over such 
cycles vanishes mod 4zr (4~ being the period of  f~ with our normalization), 
it is not difficult to prove that tr is independent of  the choice of  the ball 
containing c and of the point a in the ball, and that 

lim or = f l~ (6) 
A->O ,J~, 

where the limit is taken over the partitions of  the unit interval and, for each 
partition, A=-maxlt i+l-  ti I. Thus, we can set 

qb(c) --= lim or (7) 
A ~ 0  

and the function �9 so defined is well determined mod 47r on the class Cr 
of  small cycles. 

The function qb defined by (7) on the set of  small cycles is directly 
determined by the three-point phase. On account of  its property (6), it is 

Fig. 1. The approximation of the phase function 
around a small cycle by a sum of three-point phases. 

(2 

~, F "x 
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easy to extend ~ from small cycles to the boundary C of any oriented 
2-manifold S, provided that S is decomposable, as sketched in Figure 2, 
into portions Sh bounded by small cycles Ch. One can simply set ~ ( C ) =  
~,h ~(Ch), and it is an immediate consequence of (6) that, with this definition, 
�9 (C) is well determined mod 4~r, irrespective of the particular choice of 
the surface S bounded by C and of the particular decomposition of S. 

The fact that the phase function �9 is defined mod 4~- (rather than 
mod 2~) is geometrically significant, in the sense that for any number ~b 
such that 0 -  < ~b <27r the set of cycles C such that ~ ( C )  is represented by 
gb and the set of cycles C'  such that qb(C') is represented by ~b+2~" are 
distinct. 

To visualize this point, let us consider the complex projective space 
of lowest dimension, namely CP ~. In this case, with our normalization of 
the metric, ~ is just the 2-sphere of curvature 1, and with our normalization 
of l~ the symplectic measure of the whole space is 4~. For any ~b in the 
range 0 < - ~b <2~r, let C be the generic cycle of a class such that ~P(C) is 
represented by ~b: then one of the connected regions of the sphere bounded 
by C has area ~b, and the complementary region has area 4~r - ~b. Similarly, 
if tp is replaced by ~b'-= ~b +2~,  the cycles C'  of the class such that dp(C') 
is represented by ~b' divide the sphere into two complementary regions with 
areas ~b + 2~ and 2~ - ~b. Obviously the two classes of cycles are disjoint. 

More particularly, for th in the range 0 -  < ~b < 4~r, let a, fl, and y be 
pairwise nonconjugate points such that the oriented area of one of the 
regions enclosed by the minimal geodesic triangle afly is ~b (Figure 3a). If 
afly is replaced by a (nonminimal) geodesic triangle with the same vertices 
but one of the sides replaced by the maximal geodesic between its endpoints 
(Figure 3b), the corresponding area ~b' enclosed by the new triangle is 
0b +2~- if ~b <27r and ~b -2~r if ~b ---27r. (In the special case of three points 
a, fl, and y on the same great circle, one of  the two triangles determines a 
cycle enclosing a vanishing area, while the other is the whole oriented great 

"ql 

C 
Fig. 2. The relation between a generic cycle and 

small cycles. 
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Fig. 3. 
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{a) (b) 

(a) A minimal geodesic triangle with phase d'. (b) A geodesic triangle with the same 
vertices, but with phase ~b + 27r. 

circle, which encloses an area 2~'.) In all cases two such distinct geodesic 
triangles with the same vertices are cycles of  quite different kinds, which 
are distinguished by the phase function qb. 
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